Hadoop vendor ecosystem gaining critical mass

Nature abhors a vacuum, and enterprises abhor platforms lacking tooling. Few enterprises have the developer resources or technology savvy of early adopters. For Hadoop, early adopters invented the technology; mainstream enterprises want to consume it.

On a just-concluded tour of Ovum enterprise clients across Australia/Pacific Rim, analysts found that the few who have progressed beyond discussion stage with Hadoop are doing so with technology staff accustomed to being on their own, building their own R programs and experimenting with embryonic frameworks like Mesos and YARN. Others are either awaiting more commercial tooling or still sorting out perennial data silos.

But Hadoop is steadily turning into a more “normal” software market. And with it, the vendor ecosystem vacuum is starting to fill in. It’s very much in line with what happened with BI and data warehousing back in the mid-1990s, when tools civilized what was a new architecture for managing data that originally required manual scripting.

A brief tour of the Hadoop market

 

Look at the exhibitor list for last month’s Strata HadoopWorld conference; as the largest such Big Data event in North America, it provides a good sampling of the ecosystem. Of nearly a hundred sponsors, roughly a third were tools encompassing BI and analytics, data federation and integration, data protection, and middleware.

There was a mix of the usual suspects who regard Hadoop as their newest target. SAS analytics takes an agnostic approach, bundling a distro of Hadoop in its LASR in-memory appliance; but SAS analytics can also execute inside Hadoop clusters, converting their HPC routines to MapReduceMicroStrategy and other BI players are connecting to Hadoop in a variety of ways; they either provide suboptimal experience of having your SQL query execute in batch on Hadoop (which few use), or work through the data warehouse or Hadoop platform’s path for interactive SQL.

  • Emerging new players

But there are also new players that are taking BI beyond SQL. Datameer and Platfora each provide their own operators (e.g., clustering, time series, decision trees, or other forms of analysis that would be laborious with SQL), presenting data either through spreadsheets or visualizations. ClearStory Data, which emerged from stealth at the show, provides a way to semantically crawl your own data and mash it with external data from publicly-available APIs. Players like PivotalHadaptSpliceMachine and CitusData are implementing or co-locating SQL data stores inside HDFS or HBase.

Significantly, some are starting to package forms of data science as well, with almost a half dozen machine learning programs. A necessary development, because there are just so many Hilary Masons to go around. Having people who have a natural feel for data, able to understand its significance, how to analyze it, and most importantly, its relevance, will remain few and far between. To use these tools, you’ll need to know what algorithms to use, but at least you don’t have to build them from scratch. For instance, 0xdata packages machine learning algorithms and combines it with a caching engine for high performance analytics on Hadoop. Skytree, packages classification, clustering, regression analyses, and most importantly, dimension reduction so you can see something meaningful after combing a billion nodes (points) and edges (relationships and context).

  • Addressing security and integration

Security, a perennial weakness of Hadoop, is another area where you’re seeing vendor activity. Originally designed for trusted environments, Hadoop has long had the remote authentication piece down (Kerberos), because early adopters needed to gain access to remote clusters, and now there are incubating open source projects tackling the other two A’s of AAA – a gateway for access control (Knox) and a mechanism for role-based authorization (Sentry). Yes, there is also a specialized project for “cell” (data entity) level protection created for the NSA (Accumulo), which is being led by Sqrrl. But otherwise, we expect that vendor-based proprietary tools are going to be where most of the action is. Policy-based data protection, either about encryption or data masking, is now emerging via emerging players like Zettaset and Gazzang, with incumbents such as Protegrity and IBM extending support beyond SQL. Data lineage and activity monitoring (the first steps that could eventually lead to full-blown audit and selective read/write access) are emerging from IBMCloudera, and Revelytix.

Hadoop: First-Class Citizen of the enterprise

 

We’ve long believed that for Big Data – and Hadoop – to gain traction with enterprises, that it must become a first class citizen. Among other things, it means Hadoop must integrate with the data center and, inevitably, apps that run against it. Incumbent data integration like InformaticaTalendSyncsort, and Pentaho view Hadoop as yet another target. Originally touching Hadoop at arm’s length via the traditional ETL staging server topology, they have enabled their transformation tools to work natively inside Hadoop as the idea is a natural (Hadoop promises cheaper compute cycles for the task). Emerging players are adding new integration capabilities – Cirro for data federation; JethroData, for adding indexing to Hadoop; Kapow and Continuuity that are providing middleware for applications to integrate to Hadoop; and Appfluent for extending its data lifecycle management tool to support active archiving on Hadoop.

The subtext of the explosion of the ecosystem is Hadoop’s evolution into a more varied platform; to play anything more than a niche role in the enterprise (and draw a tooling and applications ecosystem), Hadoop must provide other processing options besides MapReduce.

Not surprisingly, interactive SQL on Hadoop became a prime battleground for vendors to differentiate. Cloudera introduced Impala, an MPP-based alternative to MapReduce that uses Hive metadata but bypasses the bottleneck of Hive processing (which had traditionally relied on MapReduce). Meanwhile, Hortonworks has led projects to make Hive better (read: faster), complementing it with a faster alternative to MapReduce. As noted above, several players are implementing SQL data stores directly inside Hadoop, while IBM has modified SQL to run against Hive.

The YARN (a.k.a., MapReduce 2.0) framework provides resource allocation (not full-blown resource management, however) that will allow multiple (read: MapReduce and alternative) workloads to run on Hadoop clusters. Hortonworks, which led development, announced a circle of partners who are supporting the new framework. Its rival, Cloudera, is taking a more measured approach; MapReduce and Impala workloads will be allocated under the YARN umbrella, but streaming or search won’t. Having been carved out of the original resource manager for pre-2.0 MapReduce, Cloudera doesn’t believe the new framework is suited for handling continuous workloads that don’t have starts or stops.

So, going forward, we’re seeing Hadoop emerge with an increasingly well-rounded third party ecosystem where little existed before. We expect that in the coming year, this will spread beyond tools to applications as well; we’ll see more of what the likes of Causata are doing.

So what role will Hadoop play?

.
For now, Hadoop remains a work in progress – data integration and lifecycle management, security, performance management, and governance practices and technologies are at early stages of evolution. At Strata, Facebook’s Ken Rudin made an eloquent plea for coexistence; they tracked against the wind by starting with Hadoop and learning that it was best for exploratory analytics while relational was best suited for queries with standard metrics (he’s pitched the same message to the data warehousing audience as well).

Cloudera’s Mike Olson, who had the podium right before Rudin, announced Cloudera’s vision of Hadoop as enterprise data hub: Hadoop is not just the logical landing spot for data, but also the place where you can run multiple workloads. Andrew Brust equates Cloudera’s positioning as making Hadoop become “the Ellis Island of data.”

  • So is Olson agreeing or arguing with Rudin?

The context is that analytic (and some transactional) data platforms are taking on multiple personalities (e.g., SQL row stores adding column engines, file/HDFS data stores, JSON stores – in some cases alongside or in hybrid). All analytic data platforms are grabbing for multiple data types and running workloads. They are also vying to become the logical spot where analytics are choreographed – mixing and matching data sets on different platforms for running analytic problems.

Cloudera aims to compete, not just as another Hadoop platform, but as the default platform where analytic data lives. It doesn’t necessarily replace SQL enterprise data warehouses, but assumes more workloads requiring scale, inexpensive compute cycles, and the ability to run multiple types of workloads – not just MapReduce. SQL data warehouses aren’t standing still either, and in many cases are embracing Hadoop. Hadoop has the edge on cost of compute cycles, but pieces must fall into place to gain parity regarding service level management and performance, security, availability and reliability, and information lifecycle management. Looking ahead, we expect analytics to run on multiple platforms, with the center of gravity up for grabs.

Editor’s Note: this article first appeared on Tony’s personal blog 
photo credit: Marius B via photopin cc
photo credit: yukop via photopin cc