Wikibon

Wikibon.org

Next Generation Flash Architecture & Management David Floyer

CTO & Co-founder, Wikibon

<u>David.Floyer@Wikibon.org</u>, @dfloyer

March, 2015

All Flash Case Studies

UK Financial House:

- Will be 100% Flash in 2015
- Flash moved bottleneck to Processors Installed New Faster Servers
- Every developer has own full copy databases
- Doubled number of production databases from 25 to 50
- Doubled productivity of development

US ISV

- Combined all Production & Development Workloads to Flash
- Implemented 100% Flash & Continuous Development
- Increased # Updates/Release by 3x, from 600 to 1,800

US Electronic Distributer

- Combined all workloads onto Flash
- . They All Revenue with no additional headcount in 18 hor

At the End of this Presentation...

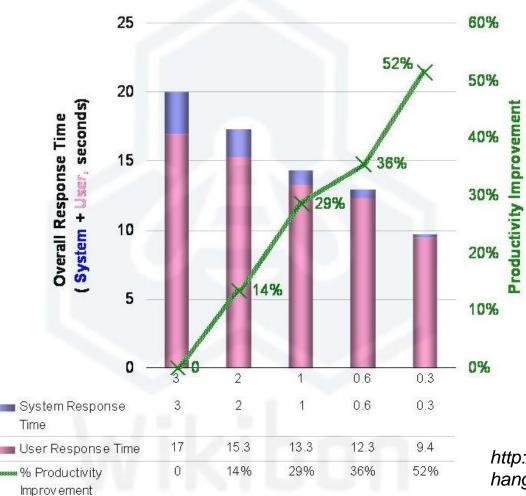
- Plan Implementation of an <u>Electronic Data</u>
 <u>Center</u> as a Strategic Imperative
- Measure & Minimize # Physical Copies of Data
- Plan to Combine Transactional, Data Warehouse & Development Data
- Plan to Completely Revamp Application
 Development Infrastructure & Practice
- Completely Revamp Application Architecture
 ...by Removing the Disk Boat Anchor

Agenda: Second Generation Flash Architectures

- Flash vs. HDD Comparison
- Impact of Response Time on People Efficiency
- Impact of Response Time on System Efficiency
- Impact of Data Reduction & Data Sharing on Cost
- Flash Enabled Application Design
- First Generation AFA
- Architectural Requirements for New Generation AFAs
- Management Requirements for New Generation AFAs
- Conclusions & Recommendations

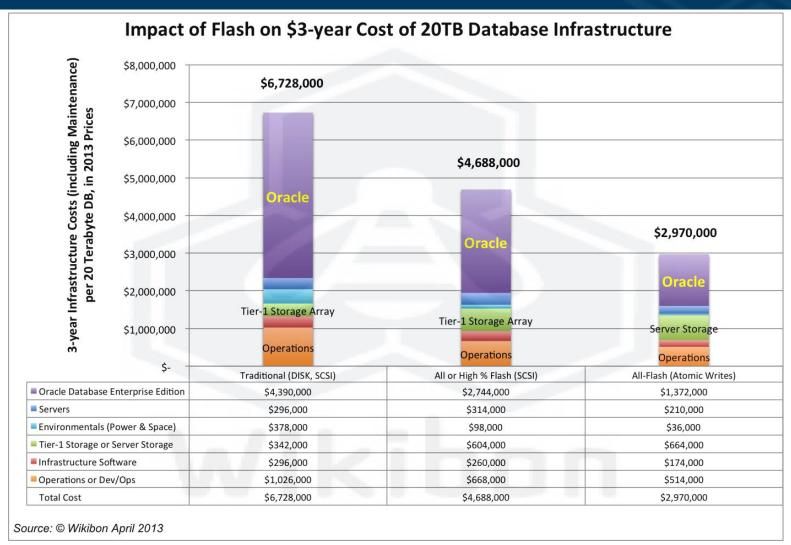
Agenda: Second Generation Flash Architectures

- Flash vs. HDD Comparison
- Impact of Response Time on People Efficiency
- Impact of Response Time on System Efficiency
- Impact of Data Reduction & Data Sharing on Cost
- Flash Enabled Application Design
- First Generation AFA
- Architectural Requirements for New Generation AFAs
- Management Requirements for New Generation AFAs
- Conclusions & Recommendations


Flash Characteristics compared with HDD

- Flash more expensive per Byte raw
- Flash prices driven by consumer demand (mobile)
- HDD for mobile & desktop rapidly declining market
 - Desktop/Laptop SSD 25% in 2014, 50% in 2018
 - Mobile market 100% Flash
- Flash faster improvement compared with HDD
 - Capacity: Flash ~30% CAGR, HDD ~15% CAGR
 - Bandwidth: Flash ~30% CAGR, HDD <8% CAGR
 - IOPS: Flash ~30% CAGR, HDD <0% CAGR
- HDD characteristics allow very little sharing of data
 - Space-efficient snapshots limited to fast recovery
 - Full copies must be made if data is accessed by multiple applications (e.g., production & development)
- Flash allows true virtualization of data
 - · Data can be aggressively reused
 - Fewer full copies need to be made
- HDD is best with sequential workloads, Flash is best with random
 - HDD need large caches & small working sets for random workloads

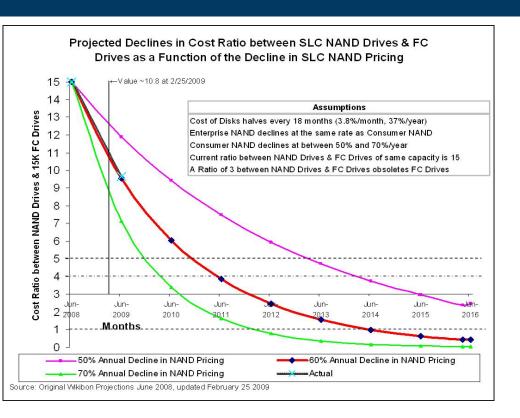
Flash Bisk Need Completely Different Architecture & Management


Productivity as a Function of Response Time

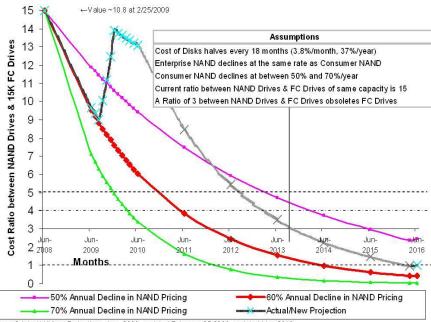
Economic Impact of Rapid Response Time

http://wikibon.org/wiki/v/Flash_and_Hyperscale_C hanging Database and System Design Forever

Cost of Database Licenses as a function of IO RT

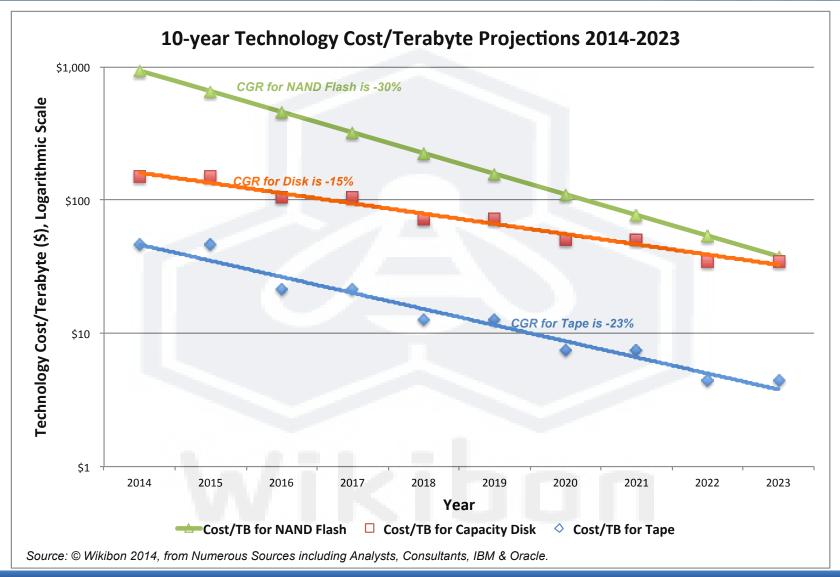


http://wikibon.org/wiki/v/Flash_and_Hyperscale_Changing_Database_and_System_Design_Forever


Agenda: Second Generation Flash Architectures

- Flash vs. HDD Comparison
- Impact of Response Time on People Efficiency
- Impact of Response Time on System Efficiency
- Impact of Data Reduction & Data Sharing on Cost
- Flash Enabled Application Design
- First Generation AFA
- Architectural Requirements for New Generation AFAs
- Management Requirements for New Generation AFAs
- Conclusions & Recommendations

Wikibon 2009/2010 Flash Forecasts



Projected Declines in Cost Ratio between SLC NAND Drives & FC Drives as a Function of the Decline in SLC NAND Pricing

Source: Original Wikibon Projections June 2008, updated February 25 2009, updated May 2010

10-year Technology Cost/TB Projections

Copy Management

Large Independent Caching

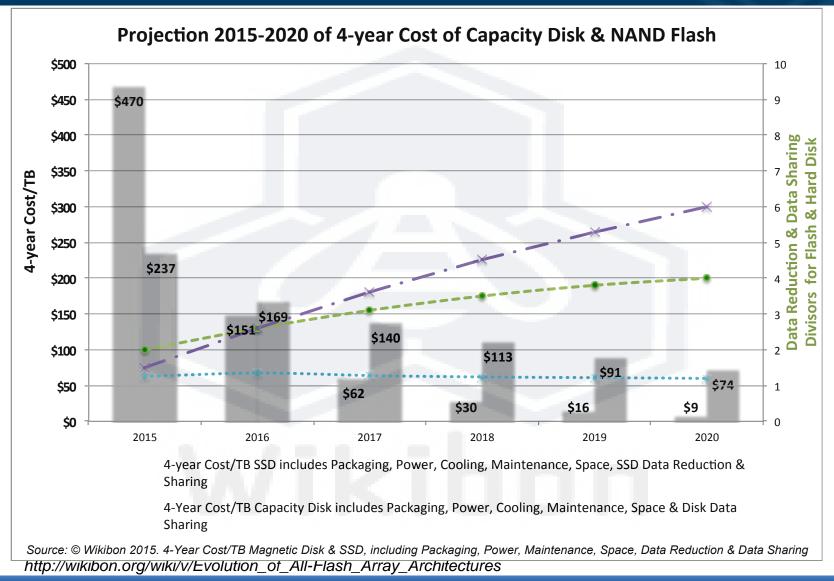
Traditional Disk Array

90% of Data is a Copy of Original data

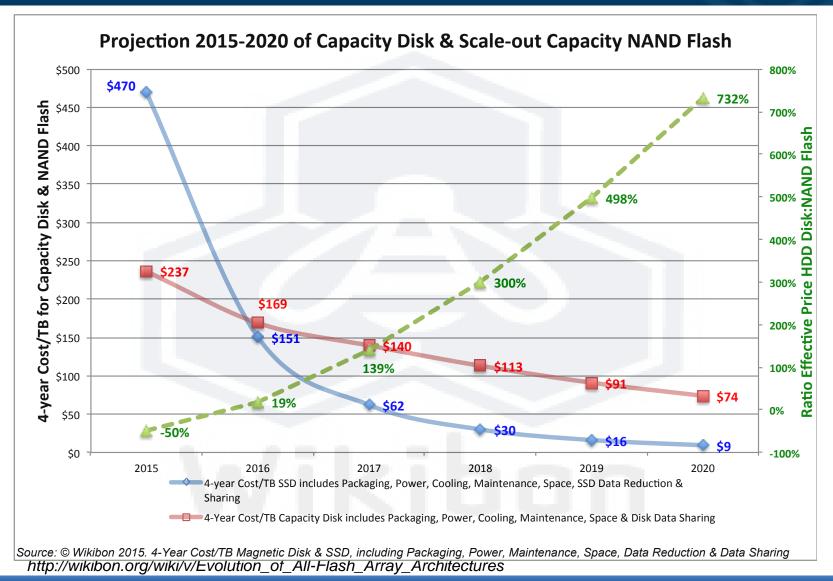
Small Shared Cache

All Flash Array

Flash allows Data Reduction & Spaceefficient Snapshots allow Data Sharing

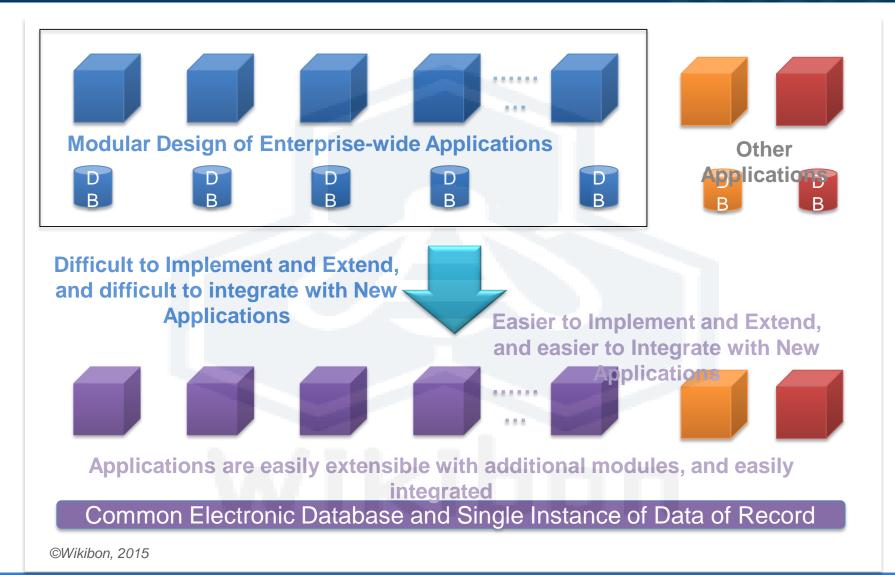

Action: Measure & Minimize # Physical Copies of Data

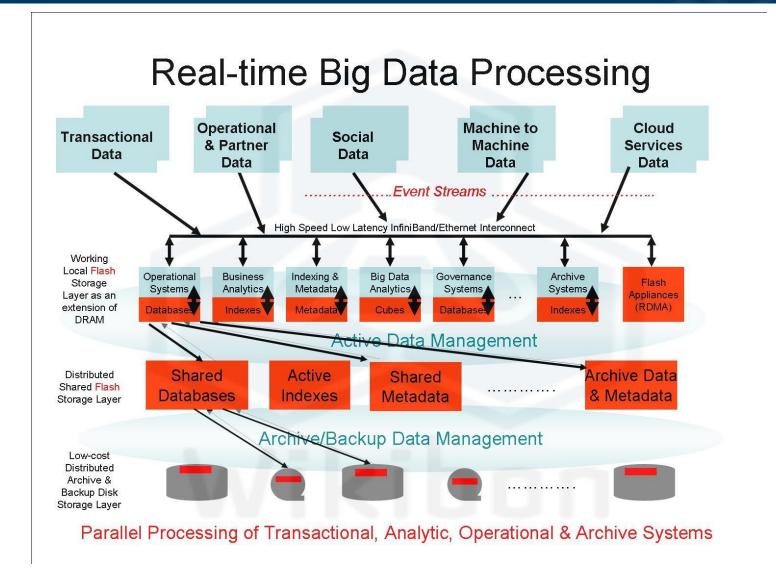
Cost case of AFA


- 6 x reduction in cost from data sharing and copy elimination
- 4 x reduction from compression and deduplication
- Much faster response time for all applications (end-user productivity)
- Ability to deploy new applications with OLTP mixed with *Inline Analytics*

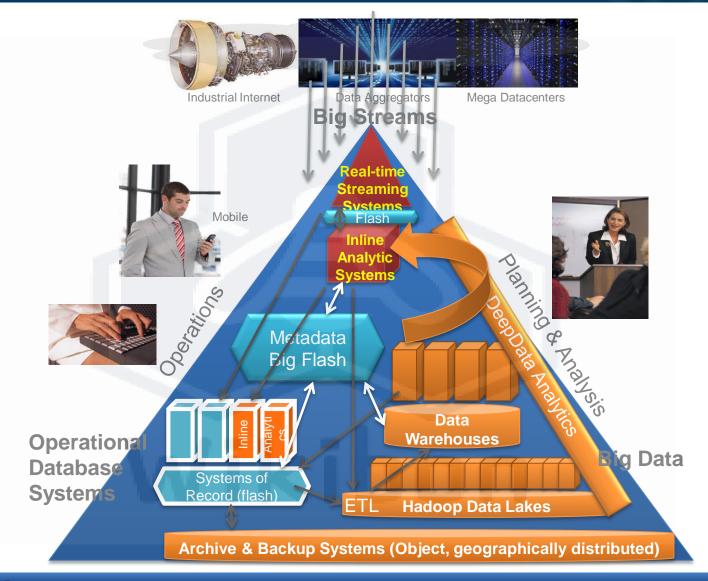
 Potential 24 x Reduction in Raw Storage Required

Infrastructure Costs by Technology


Infrastructure Costs by Technology


Agenda: Second Generation Flash Architectures

- Flash vs. HDD Comparison
- Impact of Response Time on People Efficiency
- Impact of Response Time on System Efficiency
- Impact of Data Reduction & Data Sharing on Cost
- Flash Enabled Application Design
- First Generation AFA
- Architectural Requirements for New Generation AFAs
- Management Requirements for New Generation AFAs
- Conclusions & Recommendations


Flash-enabled Application Design

Real-time Big Data Processing

Integrated Transactional, Analytic & Development Data Management

Agenda: Second Generation Flash Architectures

- Flash vs. HDD Comparison
- Impact of Response Time on People Efficiency
- Impact of Response Time on System Efficiency
- Impact of Data Reduction & Data Sharing on Cost
- Flash Enabled Application Design
- First Generation AFA
- Architectural Requirements for New Generation AFAs
- Management Requirements for New Generation AFAs
- Conclusions & Recommendations

1st Generation AFA

- Copy of Traditional HDD Array architecture
- Traditional 2-controller Design
- Traditional Cache management
- Controller speed Constraint for Functionality & Amount of storage
- "Storage Silo" view of world
- Examples:
 - Cisco Whiptail
 - IBM TMS
 - NetApp e-Series
 - Nimbus
 - Pure
 - Skyera
 - Violin

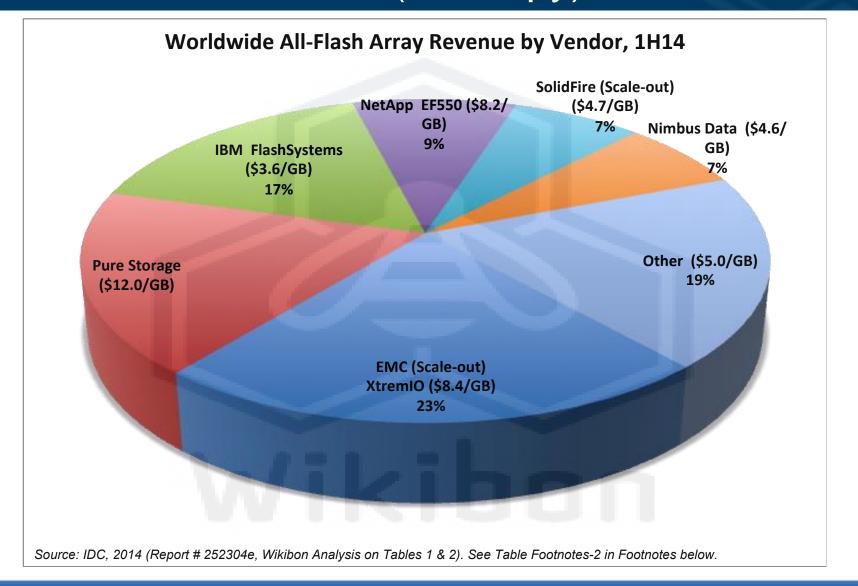
Architecture Requirements for New Generation AFAs

- More data held in Array, greater savings in reducing copies
 - Scale out architecture, Dynamic addition of capacity
- No tiering required for 95%+ of data
- Simple tiering only required for <5% of data with:
 - Very low change rate
 - Low historical data access
 - No dynamic requirement for transfer
- Full storage reduction techniques multiply benefits by amount of reuse
- AFA must use snapshot change management (vs. traditional replication by application and copy of data)
- Virtualization & Sharing of Data requires extremely high levels of metadata protection
 - Accidental loss
 - Microcode failure
 - Technology failure
 - Malicious long-term/short-term hacking

Management Requirements for New Generation AFAs

- Catalog of Data Copies, Snapshots, etc.
 - Catalog shared with Linked & Remote AFA arrays
 - Automated Backup & Recovery system
- Full access to data via Restful APIs for platform integration
- Extensive Quality of service management
 - Minimums & Maximum IOPS, Bandwidth & RT
 - Different QoS for snaps
- Full Application IO view
- Full IO monitoring
 - By application
 - By copy
 - % shared data
 - Etc.
- Automated migration of unsuitable data to HDD
 - Option to retain Metadata at AFA
- Full Orchestration & Workflow Automation support for Platforms

Infrastructure Costs by Technology (No Copy)


Worldwide All-Flash Array Revenue by Vendor, 1H 2014									
Vendor	Revenue Jan- June 2014 (\$M)	Capacity Jan- June 2014 (TB)	Revenue Share (%)	\$/GB	Scale-out	De-Duplication	Compression		
EMC XtremIO	\$112	13,405	23%	\$8.4	Υ	Υ	Υ		
Pure Storage	\$91	7,558	18%	\$12.0	N	Υ	Υ		
IBM FlashSystems	\$83	22,773	17%	\$3.6	N	Ν	Υ		
NetApp EF550	\$45	5,500	9%	\$8.2	N	Ν	N		
SolidFire	\$36	7,526	7%	\$4.7	Υ	Υ	Υ		
Nimbus Data	\$34	7,501	7%	\$4.6	N	Υ	N		
Other	\$95	19,214	19%	\$5.0	N*				
Total	\$496	83,476	100%	\$5.9					

Source: IDC, 2014 (Report # 252304e, Wikibon Analysis on Tables 1 & 2)

Notes: Data includes the value of the entire system but excludes channel markup. Texas Memory Systems moved from the "other" category to IBM during CY13.

^{*} All other all-flash arrays are dual controler with the exception of Kaminario, which is scale-out.

Infrastructure Costs by Technology (No Copy)

Management Requirements for New Generation AFAs

- Catalog of Data Copies, Snapshots, etc.
 - Catalog shared with Linked & Remote AFA arrays
 - Automated Backup & Recovery system
- Full access to data via Restful APIs for platform integration
- Extensive Quality of service management
 - Minimums & Maximum IOPS, Bandwidth & RT
 - Different QoS for snaps
- Full Application IO view
- Full IO monitoring
 - By application
 - By copy
 - % shared data
 - Etc.
- Automated migration of unsuitable data to HDD
 - Option to retain Metadata at AFA
- Full Orchestration & Workflow Automation support for Platforms

Reasons for Scale-out

- Greater Sharing of Data
- Greater De-duplication
- Fewer Copies
- Simpler Data & Metadata Management
- Allows Migration to Continuous Development
- Allows Migration to Real-time ETL
- Allows Migration to In-line Analytics
- Allows Next-generation Applications with 1,000x Database Calls

Conclusions & Recommendation's

- Plan Implementation of an <u>Electronic Data</u>
 <u>Center</u> as a Strategic Imperative
- Measure & Minimize # Physical Copies of Data
- Plan to Combine Transactional, Data Warehouse & Development Data
- Plan to Completely Revamp Application Development Infrastructure & Practice
- Completely Revamp Application Architecture Business & IT Plan to Double IT Productivity & Double Productivity of Application Users

Appendix I: Cost Assumptions for Flash on Storage Arrays

	\$/Usable TB without DRe	Data Reduction Ratio (DRe)		\$/Usable DRe
Cost of Capacity Flash AFA without DRe	\$900	1	1	\$900
Cost of Tier 1 Disk	\$1,700	1	1	\$1,700
Cost of Tier 1 Flash Tiering	\$8,000	1	1	\$8,000
Cost of AFA without DRe Function	\$10,000	1	2	\$5,000
Cost of AFA with DRe Function	\$15,000	4	4	\$938
Cost Very Low Latency Flash without DRe	\$16,500	1	1	\$16,500

Appendix II: Storage Cost Assumptions

Assumptions for Maintenance, Power, Cooling & Space

Cost of Power is \$0.12/kWhour

Cooling & power distribution cost is equal to twice equipment power draw

Cost of power, cooling & space for disk is 12% of acquisition cost of disk for 4 years

Cost of power, cooling & space for flash is 10% of disk power, cooling & space costs

Maintenance for disk is 18% of acquisition cost of flash for four years

Maintenance of flash is 10% of acquisition cost of flash for four years, reducing by 1%/year and stabilizing at 5%

Data reduction divisor & data sharing divisor for scale-out flash are averages for all data

Data reduction divisor for disk is average for all data.

Source: Wikibon 2014