Wikibon

Wikibon.org

Next Generation Flash Architecture & Management

David Floyer

CTO & Co-founder, Wikibon

David.Floyer@Wikibon.org, @dfloyer

March, 2015

All Flash Case Studies

- UK Financial House:
 - Will be 100% Flash in 2015
 - Flash moved bottleneck to Processors Installed New Faster Servers
 - Every developer has own full copy databases
 - Doubled number of production databases from 25 to 50
 - Expected doubling of development productivity
- US ISV
 - Combined all Production & Development Workloads to Flash
 - Implemented 100% Flash & Continuous Development
 - Increased # Builds/day by 3x, from 600 to 1,800
 - Build failures decreased from 17% to 2%
- US Electronic Distributer
 - Combined all workloads onto Flash
 - 30% increase in Revenue with no additional headcount in 18 months

... They All Removed the Disk Boat Anchor

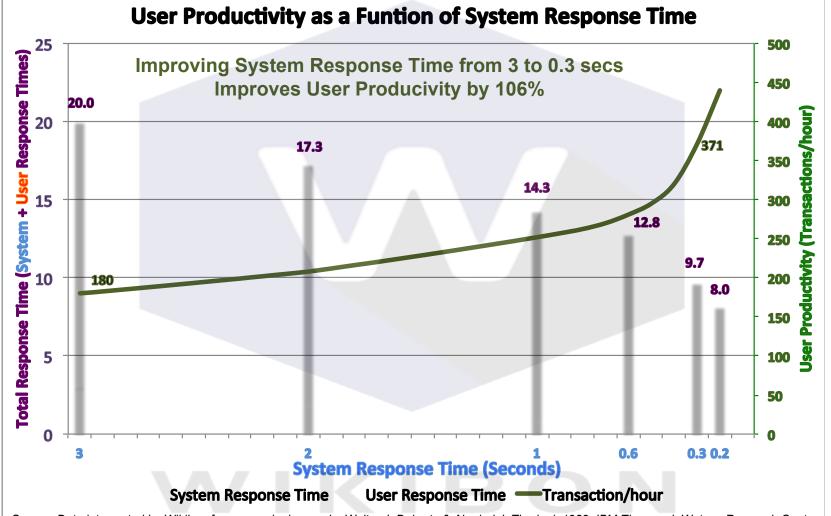
At the End of this Presentation..

- Plan Implementation of an <u>Electronic Data</u>
 <u>Center</u> as a Strategic Imperative
- Measure & Minimize # Physical Copies of Data
- Plan to Combine Transactional, Data Warehouse & Development Data
- Plan to Completely Revamp Application
 Development Infrastructure & Practice
- Completely Revamp Application Architecture
 ...by Removing the Disk Boat Anchor

Agenda: Second Generation Flash Architectures

- Flash vs. HDD Comparison
- Impact of Response Time on People Efficiency
- Impact of Response Time on System Efficiency
- Impact of Data Reduction & Data Sharing on Cost
- Flash Enabled Application Design
- First Generation AFA
- Architectural Requirements for New Generation AFAs
- Management Requirements for New Generation AFAs
- Conclusions & Recommendations

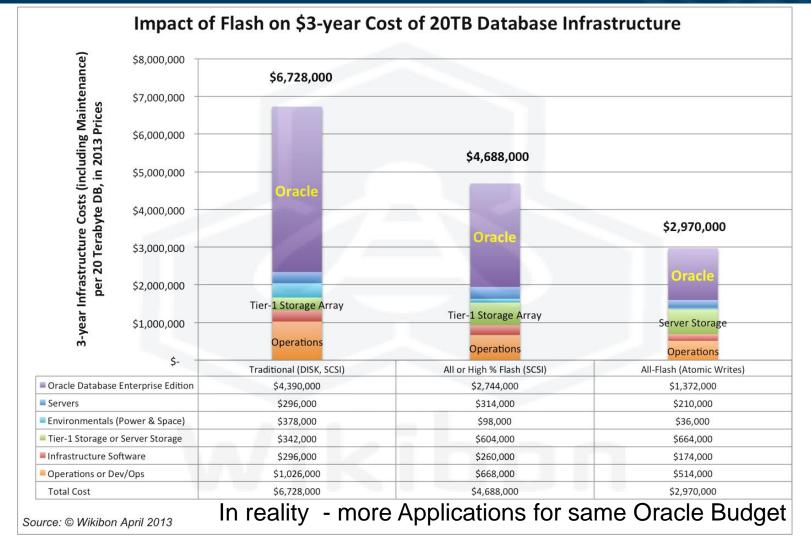
Agenda: Second Generation Flash Architectures


- Flash vs. HDD Comparison
- Impact of Response Time on People Efficiency
- Impact of Response Time on System Efficiency
- Impact of Data Reduction & Data Sharing on Cost
- Flash Enabled Application Design
- First Generation AFA
- Architectural Requirements for New Generation AFAs
- Management Requirements for New Generation AFAs
- Conclusions & Recommendations

Flash Characteristics compared with HDD

- Flash more expensive per Byte raw
- Flash prices driven by consumer demand (mobile)
- HDD for mobile & desktop rapidly declining market
 - Desktop/Laptop SSD 25% in 2014, 50% in 2018
 - Mobile market 100% Flash
- Flash faster improvement compared with HDD
 - Capacity: Flash ~30% CAGR, HDD ~15% CAGR
 - Bandwidth: Flash ~30% CAGR, HDD <8% CAGR
 - IOPS: Flash ~30% CAGR, HDD <0% CAGR
- HDD characteristics allow very little sharing of data
 - Space-efficient snapshots limited to fast recovery
 - Full copies must be made if data is accessed by multiple applications (e.g., production & development)
- Flash allows true virtualization of data
 - Data can be aggressively reused
 - Fewer full copies need to be made
- HDD is best with sequential workloads, Flash is best with random
 - HDD need large caches & small working sets for random workloads

Flash Disk Weed Completely Different Architecture & Management

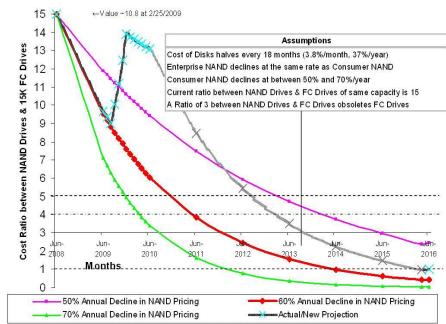

Productivity as a Function of Response Time

Source: Data interpreted by Wikibon from a seminal paper by Walter J. Doherty & Ahrvind J. Thadani, 1982, IBM Thomas J. Watson Research Center, updated to include other studies 1997, downloaded http://www.vm.ibm.com/devpages/jelliott/evrrt.html April 2015

7

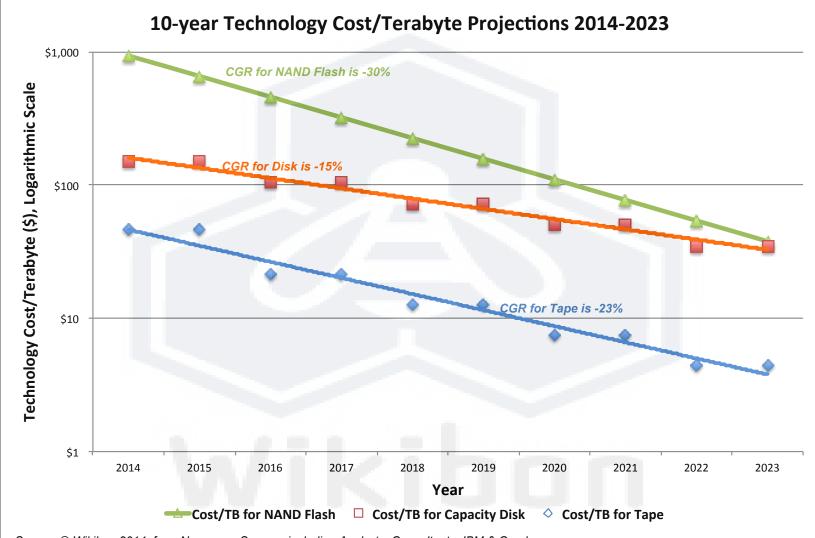
Cost of Database Licenses as a function of IO RT

http://wikibon.org/wiki/v/Flash_and_Hyperscale_Changing_Database_and_System_Design_Forever

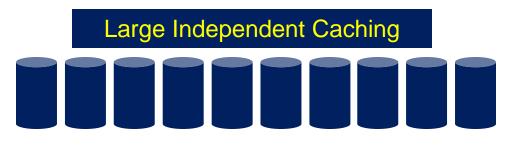

Agenda: Second Generation Flash Architectures

- Flash vs. HDD Comparison
- Impact of Response Time on People Efficiency
- Impact of Response Time on System Efficiency
- Impact of Data Reduction & Data Sharing on Cost
- Flash Enabled Application Design
- First Generation AFA
- Architectural Requirements for New Generation AFAs
- Management Requirements for New Generation AFAs
- Conclusions & Recommendations

Wikibon 2009/2010 Flash Forecasts


Projected Declines in Cost Ratio between SLC NAND Drives & FC Drives as a Function of the Decline in SLC NAND Pricing ⊷Value ~10.8 at 2/25/2009 15 14 Assumptions Cost Ratio between NAND Drives & 15K FC Drives 13 Cost of Disks halves every 18 months (3.8%/month, 37%/year) 12 Enterprise NAND declines at the same rate as Consumer NAND Consumer NAND declines at between 50% and 70%/year 11 Current ratio between NAND Drives & FC Drives of same capacity is 15 10 A Ratio of 3 between NAND Drives & FC Drives obsoletes FC Drives 9 15 8 14 7 13 6 12 5 11 Δ 10 3 Jun-Jun-Jun-Jun-Jun-Jun-9 2 2008 2009 2010 2014 011 2011 2015 2016 Months 8 1 7 0 50% Annual Decline in NAND Pricing 60% Annual Decline in NAND Pricing 6 70% Annual Decline in NAND Pricing Actual 5 Source: Original Wikibon Projections June 2008, updated February 25 2009

Projected Declines in Cost Ratio between SLC NAND Drives & FC Drives as a Function of the Decline in SLC NAND Pricing


Source: Original Wikibon Projections June 2008, updated February 25 2009, updated May 2010

10-year Technology Cost/TB Projections

Source: © Wikibon 2014, from Numerous Sources including Analysts, Consultants, IBM & Oracle.

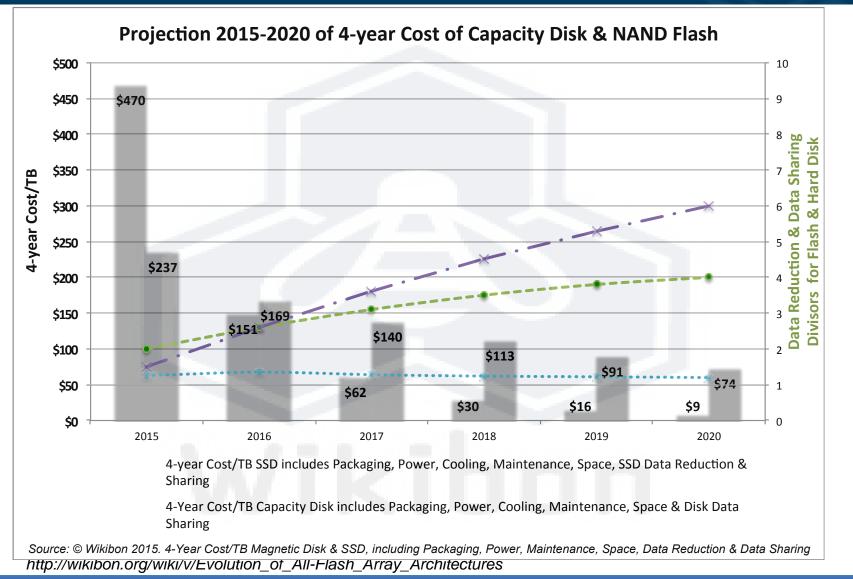
Copy Management

Small Shared Cache

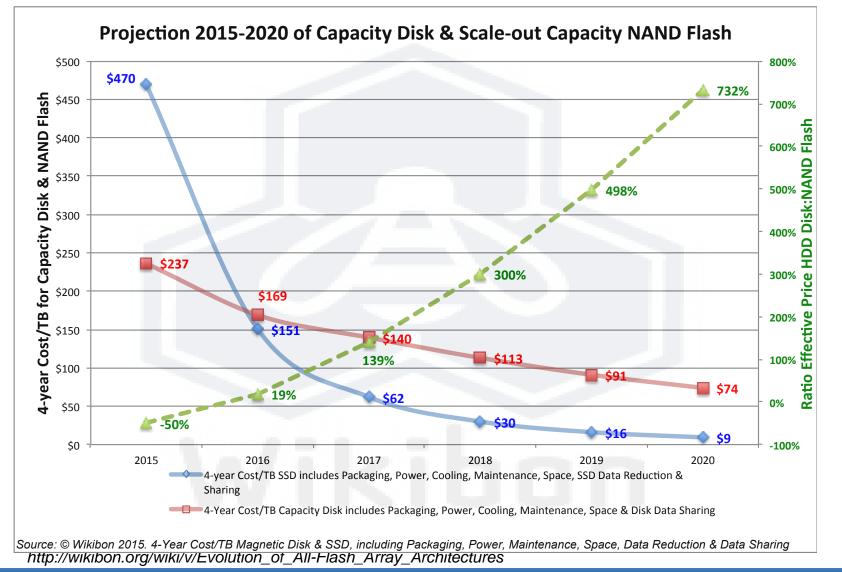
Traditional Disk Array

90% of Data is a Copy of Original data

All Flash Array

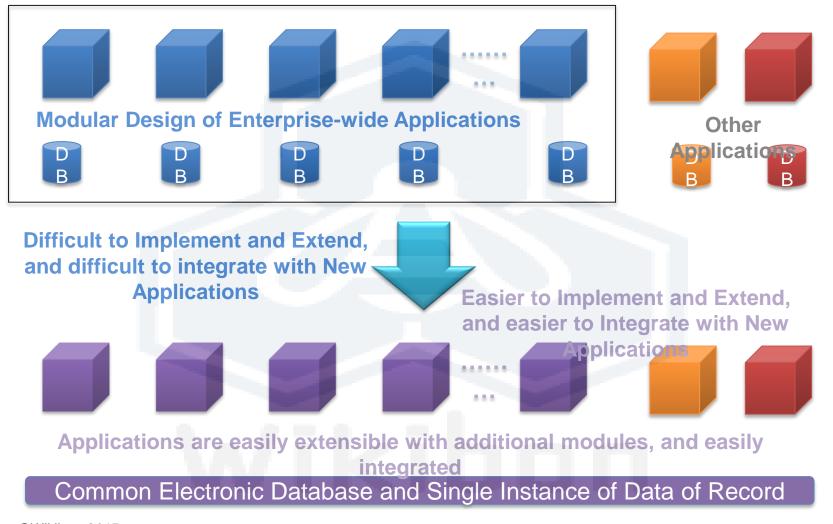

Flash allows Data Reduction & Spaceefficient Snapshots allow Data Sharing

Action: Measure & Minimize # Physical Copies of Data

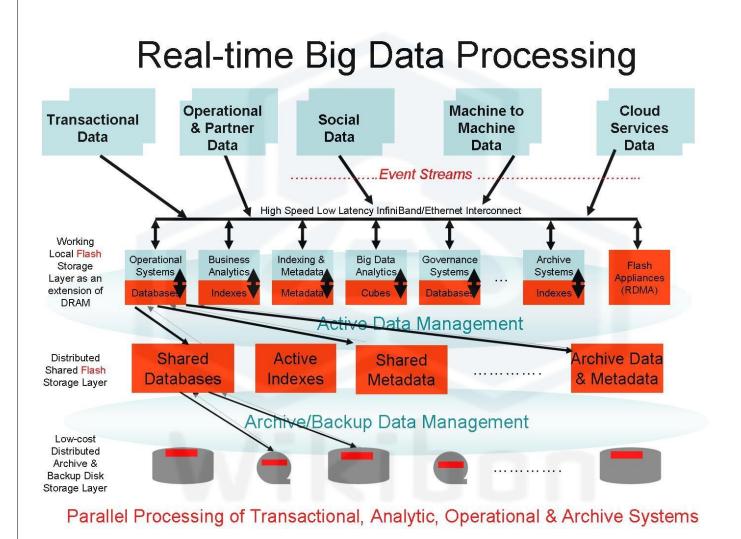

Cost case of AFA

- 6 x reduction in cost from data sharing and copy elimination
- 4 x reduction from compression and deduplication
- Much faster response time for all applications (end-user productivity)
- Ability to deploy new applications with OLTP mixed with *Inline Analytics*
- Potential 24 x Reduction in Raw Storage Required

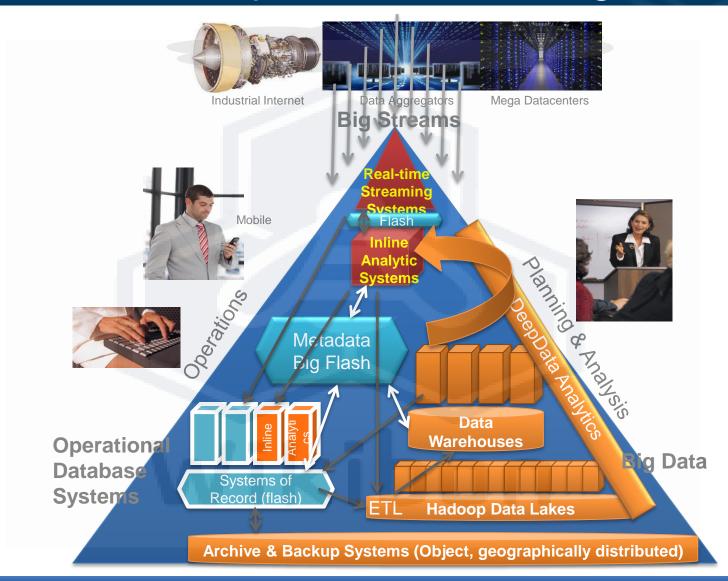
Infrastructure Costs by Technology


Infrastructure Costs by Technology

Agenda: Second Generation Flash Architectures


- Flash vs. HDD Comparison
- Impact of Response Time on People Efficiency
- Impact of Response Time on System Efficiency
- Impact of Data Reduction & Data Sharing on Cost
- Flash Enabled Application Design
- First Generation AFA
- Architectural Requirements for New Generation AFAs
- Management Requirements for New Generation AFAs
- Conclusions & Recommendations

Flash-enabled Application Design



©Wikibon, 2015

Real-time Big Data Processing

Integrated Transactional, Analytic & Development Data Management

© Wikibon 2015

Agenda: Second Generation Flash Architectures

- Flash vs. HDD Comparison
- Impact of Response Time on People Efficiency
- Impact of Response Time on System Efficiency
- Impact of Data Reduction & Data Sharing on Cost
- Flash Enabled Application Design
- First Generation AFA
- Architectural Requirements for New Generation AFAs
- Management Requirements for New Generation AFAs
- Conclusions & Recommendations

1st Generation AFA

- Copy of Traditional HDD Array architecture
- Traditional 2-controller Design
- Traditional Cache management
- Controller speed Constraint for Functionality & Amount of storage
- "Storage Silo" view of world
- Examples:
 - Cisco Whiptail
 - IBM TMS
 - NetApp e-Series
 - Nimbus
 - Pure
 - Skyera
 - Violin

Architecture Requirements for New Generation AFAs

- More data held in Array, greater savings in reducing copies
 - Scale out architecture, Dynamic addition of capacity
- No tiering required for 95%+ of data
- Simple tiering only required for <5% of data with:
 - Very low change rate
 - Low historical data access
 - No dynamic requirement for transfer
- Full storage reduction techniques multiply benefits by amount of reuse
- AFA must use snapshot change management (vs. traditional replication by application and copy of data)
- Virtualization & Sharing of Data requires extremely high levels of metadata protection
 - Accidental loss
 - Microcode failure
 - Technology failure
 - Malicious long-term/short-term hacking

Management Requirements for New Generation AFAs

- Catalog of Data Copies, Snapshots, etc.
 - Catalog shared with Linked & Remote AFA arrays
 - Automated Backup & Recovery system
- Full access to data via Restful APIs for platform integration
- Extensive Quality of service management
 - Minimums & Maximum IOPS, Bandwidth & RT
 - Different QoS for snaps
- Full Application IO view
- Full IO monitoring
 - By application
 - By copy
 - % shared data
 - Etc.
- Automated migration of unsuitable data to HDD
 - Option to retain Metadata at AFA
- Full Orchestration & Workflow Automation support for Platforms

Management Requirements for New Generation AFAs

- Catalog of Data Copies, Snapshots, etc.
 - Catalog shared with Linked & Remote AFA arrays
 - Automated Backup & Recovery system
- Full access to data via Restful APIs for platform integration
- Extensive Quality of service management
 - Minimums & Maximum IOPS, Bandwidth & RT
 - Different QoS for snaps
- Full Application IO view
- Full IO monitoring
 - By application
 - By copy
 - % shared data
 - Etc.
- Automated migration of unsuitable data to HDD
 - Option to retain Metadata at AFA
- Full Orchestration & Workflow Automation support for Platforms

Reasons for Scale-out

- Greater Sharing of Data
- Greater De-duplication
- Fewer Copies
- Simpler Data & Metadata Management
- Allows Migration to Continuous Development
- Allows Migration to Real-time ETL
- Allows Migration to In-line Analytics
- Allows Next-generation Applications with 1,000x Database Calls

Conclusions & Recommendation's

- Plan Implementation of an <u>Electronic Data</u>
 <u>Center</u> as a Strategic Imperative
- Measure & Minimize # Physical Copies of Data
- Plan to Combine Transactional, Data Warehouse & Development Data
- Plan to Completely Revamp Application
 Development Infrastructure & Practice

 Completely Revamp Application Architecture Business & IT Plan to Double IT Productivity & Double Productivity of Application Users

Appendix I: Cost Assumptions for Flash on Storage Arrays

Wikibon 2015 Q2 Storage Cost Assumptions

Wikibon 2015 Q2 Storage Cost Assumptions											
	Storage Type	\$/Usable TB without DRe	Data Reduction Ratio (DRe)	Number of Shared Copies	Overall Data Reduction Divisor	Net \$/Uable TB					
Performance	Very Low Latency Flash without DRe	\$16,500	1	1	1	\$16,500					
	Low Latency Flash with Compression	\$16,500	2	1	2	\$8,250					
	Tier 1 Array with Flash Tiering	\$8,000	1	1	1	\$8,000					
	All-flash Array without DRe Function	\$9,000	1	2	2	\$4,500					
	All-flash Array with full DRe Function	\$15,000	4	2	8	\$1,875					
	Tier 1 Array with Magnetic Disk	\$1,700	1	1	1	\$1,700					
	Tier 2 Array with Magnetic Disk	\$1,000	1	1	1	\$1,000					
Capacity	Capacity All-flash Array	\$900	1	1	1	\$900					
	Capacity Magnetic Disk Array	\$550	1	1	1	\$550					
	Capacity All-flash Array with Sharing	\$900	1	2	2	\$450					
	Capacity All-flash Array with Compression & Sharing	\$900	2	2	4	\$225					
	Capacity DAS Magnetic Disk Storage	\$150	1	1	1	\$150					
Sour	ce: © Wikibon 2015										

Appendix II: Storage Cost Assumptions

Year	2015	2016	2017	2018	2019	2020
Disk TB/Drive	4	5	6	7	8	10
Raw Cost for Disk/TB	\$150	\$127	\$104	\$88	\$72	\$61
Disk Maintenance % of Disk Cost/year	18%	18%	18%	,988 18%	18%	18%
4-year Disk Maintenance/TB	\$127	\$85	\$61	\$41	\$30	\$20
4-year Disk Power, Cooling & Space/TB (PUE=3)	\$19	\$16	\$13	\$11	\$9	\$7
4-year Cost Disk (including Power, Cooling, Maintenance, Space)/TB	\$296	\$228	\$179	\$140	\$111	\$89
Raw Cost for Flash SSD	\$656	\$459	\$322	\$225	\$158	\$110
Flash Maintenance % of Flash Cost	10%	9%	8%	7%	6%	5%
4-year Flash Maintenance/TB	\$223	\$138	\$84	\$52	\$33	\$22
4-year Flash Power, Cooling, & Space/TB (PUE=3)	\$223	\$138	\$84 \$1	\$1	\$35 \$1	\$1
		\$599	\$406	\$278	\$192	\$133
4-year Cost SSD (including Power, Cooling, Maintenance, Space)/TB	\$881	3233	Ş400	Ş270	\$19Z	\$122
Year	2015	2016	2017	2018	2019	2020
Cost/TB for Flash (including Packaging, Power, Space, Cooling & Maintenance)	\$1,410	\$958	\$650	\$445	\$307	\$213
Cost/TB for Disk (including Packaging, Power, Space, Cooling & Maintenance)	\$474	\$365	\$286	\$224	\$178	\$142
Data Sharing Divisor for Flash	1.5	2.6	3.6	4.5	5.3	6
Data Reduction Divisor for Flash	2	2.6	3.1	3.5	3.8	4
Data Reduction Divisor for Disk	1.25	1.35	1.28	1.24	1.22	1.2
4-Year Cost/TB Capacity Disk includes Packaging, Power, Cooling,	6007	¢1.00	64.40	6442	ćo1	674
Maintenance, Space & Disk Data Sharing	\$237	\$169	\$140	\$113	\$91	\$74
4-year Cost/TB SSD includes Packaging, Power, Cooling, Maintenance,						
Space, SSD Data Reduction & Sharing	\$470	\$142	\$58	\$28	\$15	\$9
opace, sob bata neuron a sharing						